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Abstract

Catalyst design plays a crucial role in numerous chemical processes, significantly impacting 
efficiency and sustainability. Although traditional catalyst development is often time-consuming 
and labor-intensive, the embedding of Artificial Intelligence (AI) into catalyst design has initiated a 
transformative era in catalysis, providing unprecedented opportunities to accelerate the discovery, 
optimization, and application of novel catalysts. AI techniques, including Machine Learning (ML) 
and big data analytics, offer efficient and faster alternatives by unraveling the complex relationships 
between catalyst structure and function. In this perspective, we review the current advancements, 
challenges, and future prospects of AI-driven catalyst design, highlighting its potential to revolutionize 
sustainable chemistry.
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Introduction

Catalysts are essential for the synthesis of a variety of prod-
ucts, ranging from pharmaceuticals to fuels, which are playing 
the crucial roles in the numerous industrial applications funda-
mental to processes spanning chemical synthesis, energy con-
version, and environmental remediation [1]. The significance 
of catalysts is highlighted by their involvement in key industrial 
processes such as the Haber-Bosch process for ammonia syn-
thesis, catalytic converters in automobiles for pollution control, 
and the production of various petrochemicals [2,3]. Despite 
their critical role, the design of catalysts that exhibit simulta-
neously high activity, target products selectivity, and long term 
stability continues to pose a significant challenge [4]. Tradition-

ally, catalyst development has relied heavily on empirical meth-
ods. Researchers have tested various materials and conditions, 
refining their approaches through trial and error. This process 
was not only time-consuming and resource-intensive but also 
required extensive synthesis and testing of numerous candidate 
materials before a viable solution could be identified [5]. More-
over, the complexity of catalytic systems, which often involves 
multiple variables and intricate interactions at the molecular-at-
om-electron level, makes this traditional approach increasingly 
inefficient as the demands for specialized and high-performance 
catalysts continues to rise. As global industries and research 
communities face mounting pressures to develop sustainable 
and efficient chemical processes, the urgency for innovative 
approaches to catalyst design has become more pronounced 
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Figure 1: Schematic representation of AI-accelerated catalyst 
design process. 
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Figure 1: Schematic representation of AI-accelerated catalyst design process.  

AI technologies are expected to become as powerful tools for addressing the challenges in catalyst 

design, offering faster and more data-driven approaches for discovery and optimization [7]. AI excels at 

processing vast datasets, identifying patterns, and predicting outcomes that are difficult to achieve with 

conventional methods [8]. As shown in Figure 1, the AI-accelerated catalyst design process generates 

molecular structures and predicts potential material properties based on physical principles and 

chemical knowledge, while simultaneously exploring the catalyst chemical space through 

computational simulations. AI is employed to optimize candidate selection and to refine synthesis and 

AI technologies are expected to become as powerful tools 
for addressing the challenges in catalyst design, offering faster 
and more data-driven approaches for discovery and optimiza-
tion [7]. AI excels at processing vast datasets, identifying pat-
terns, and predicting outcomes that are difficult to achieve 
with conventional methods [8]. As shown in Figure 1, the AI-
accelerated catalyst design process generates molecular struc-
tures and predicts potential material properties based on physi-
cal principles and chemical knowledge, while simultaneously 
exploring the catalyst chemical space through computational 
simulations. AI is employed to optimize candidate selection and 
to refine synthesis and preparation conditions, generating data 
for model training. Catalyst descriptors are then derived, and 
catalyst performance is predicted using deep learning models. 
This iterative process, driven by continuous feedback loops, sys-
tematically optimizes and identifies the most effective catalyst.

This perspective highlights a broader range of AI-driven ad-
vancements in catalyst design. We present case studies where 
AI has successfully identified promising catalyst candidates and 
optimized reaction conditions more efficiently than traditional 
methods. These examples illustrate the practical impact of AI on 
catalyst design process and illustrate its potential to streamline 
the development of catalysts with targeted performance char-
acteristics. Our aim is to provide a forward-looking perspective 
on how AI can contribute to the evolution of sustainable chem-
istry and address the pressing needs of modern industrial and 
environmental applications.

The embedding of artificial intelligence in catalyst design

AI is not merely a tool for accelerating existing work flows, 
it fundamentally reshapes how researchers approach catalyst 
design. Techniques such as supervised and unsupervised learn-
ing, neural networks, and reinforcement learning enable the 
modeling of complex catalytic systems and the prediction of 
performance based on factors like composition, structure, and 
reaction conditions. AI has already been applied to discover 
catalysts for CO₂ reduction, water splitting, and hydrogenation 
reactions, showing its vast potential [9]. Traditional catalyst 
discovery involves iterative experimentation, a slow and costly 
process. AI can streamline this process by predicting catalyst 
properties from theoretical or experimental data, allowing re-
searchers to focus on the most promising candidates. Machine 
Learning (ML) algorithms have successfully analyzed large da-
tasets, identifying features that correlate with high catalytic 

performance, thereby reducing reliance on expensive trial-and-
error methods [10]. For instance, an integrated open-source 
AI-accelerated virtual screening platform was able to screen a 
library of billions of compounds against two unrelated targets 
within seven days, predicting docking poses and binding affini-
ties [11]. Additionally, an extrapolative ML approachhas been 
successfully employed to develop new multi-elemental reverse 
water-gas shift catalysts with unprecedented accuracy, identify-
ing catalyst compositions beyond the predictive capabilities of 
human experts [12]. 

AI’s capabilities extend beyond discovery to optimizing re-
action conditions. Variables such as temperature, pressure, 
and reactant concentrations greatly influence catalytic perfor-
mance. AI models can explore these vast parameter spaces to 
identify conditions that maximize activity while minimizing un-
desired by-products. For example, Bayesian optimization strat-
egies have demonstrated the abilityto identify optimal photo 
catalysts with iridium-level performance while exploring only 
2.4% of the formulation space [13]. Furthermore, AI-powered 
autonomous laboratories are transforming the catalyst devel-
opment process. These laboratories combine AI with robot-
ics, high-throughput experimentation, and ML algorithms to 
autonomously synthesize, characterize, and evaluate catalysts 
[14]. AI algorithms can analyze the results of these screenings 
to identify promising candidates more quickly than traditional 
methods. For instance, the A-Lab platform synthesized 41 novel 
compounds within 17 days [15]. While an AI-guided global alli-
ance of six autonomous labs identified 21 state-of-the-art or-
ganic laser materials [16].

Challenges in AI-driven catalyst design

Despite recent advances, AI-driven catalyst design still faces 
numerous challenges, including those related to data quality, 
model interpretability, and the integration of AI tools with exist-
ing experimental workflows. Understanding these challenges is 
crucial for advancing the field and ensuring that AI technologies 
are effectively utilized to address real-world catalytic challeng-
es. One major hurdle is the availability of large, high-quality da-
tasets. ML models require extensive data for accurate training; 
however, experimental data for many catalytic systems remain 
sparse. Most available data are limited to simple systems, which 
reduces the generalizability of models. Overcoming this chal-
lenge requires the development of comprehensive databases 
that encompass a wide range of catalyst materials and reaction 
conditions, including negative results [17]. Another challenge 
is the lack of model interpretability. Although AI models pre-
dict catalyst performance with high accuracy, they often act as 
“black boxes”, providing limited insight into the mechanisms 
driving these predictions. This opacity restricts the rational de-
sign of new catalysts, as mechanistic insights are crucial for un-
derstanding and improving catalytic performance. Explainable 
AI (XAI) is gaining traction as a solution [18]. Aiming to enhance 
the transparent of machine learning models by elucidating how 
specific features influence performance. Experimental valida-
tion of AI predictions also remains challenging. Discrepancies 
often arise between AI-predicted and experimental results due 
to factors not captured in the models, such as catalyst degra-
dation or real-world reaction complexities. Integrating AI with 
experimental workflows through iterative feedback loops could 
enhance model accuracy and improve experimental outcomes. 
For example, Closed-Loop Transfer (CLT), which combines 

[6]. Consequently, there is a growing recognition of the need 
to integrate advanced technologies into catalyst discovery and 
optimization processes in order to overcome these limitations.
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closed-loop experimentation with physics-based feature selec-
tion, has facilitated the rapid optimization of donor–acceptor 
molecules while uncovering key chemical insights [19]. The 
computational resource limitations will be a further key chal-
lenge. Training complex AI models, especially those based on 
deep learning-based approaches, demands substantial compu-
tational power, which can be a bottleneck for smaller research 
groups that lack access to High-Performance Computing (HPC) 
resources Catalysis involves highly multidimensional systems, 
integrating data on structure, composition, and performance. 
To enable broader adoption of AI, it’s crucial to develop algo-
rithms that require less computational power or improve model 
generalization with limited resources. For instance, a transfer 
learning approach using pre-trained models, ensemble learn-
ing, and active learning has successfully accelerated the discov-
ery of 36 high-performance perovskite oxide electro catalysts, 
including 13 pure structures [20]. Reducing computational costs 
or enhancing access to shared resources will be essential for 
advancing AI in catalyst design.

Future directions in AI-catalyst integration

As AI technologies continue to advance, their role in catalyst 
design is poised to expand significantly. AI should not be viewed 
as a replacement for traditional catalyst design but rather as a 
complementary tool. Combining AI with theoretical and experi-
mental methods will offer a more comprehensive approach to 
catalyst discovery. For instance, integrating Density Functional 
Theory (DFT) calculations with AI predictions can refine catalyst 
structures and reaction mechanisms, thereby enhancing overall 
design efficiency. The creation of larger and more diverse data-
sets will enhance AI’s predictive capabilities across a wider ar-
ray of catalytic systems. By expanding data collection efforts to 
encompass more complex systems, such as multi-component 
alloys and nano structured materials, AI models will become 
more robust and generalizable. Ultimately, the future of catalyst 
design is likely to be shaped by the rise of autonomous labora-
tories, where AI will manage experiment design and execution. 
In these laboratories, AI will continuously refine synthesis and 
testing protocols, optimizing both catalysts and reaction condi-
tions in real time, without the need for human intervention.

Conclusion

AI is transforming catalyst design, by providing unprecedent-
ed speed and precision in discovering and optimizing new cata-
lytic systems. Although challenges such as data scarcity, model 
interpretability, and computational costs remain, the advan-
tages of AI-driven catalyst design are substantial. As datasets 
expand and AI models continue to improve, these approaches 
will increasingly reshape the field of catalysis, making significant 
contributions to both scientific research and industrial applica-
tions.
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